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ABSTRACT 

A Square is a quadrilateral with four sides and equal angles. The diagonals of a 

square are equal and bisect each other. The step-formed square is also a square 

with different unit lengths. In this paper, we model the probability distribution of a 

sequence of overlapping squares within a step-formed square in the case of odd-

numbered courts on the baseline. We explored the direct functional relationships 

for the formulated distribution's probability mass function (PMF). We have verified 

the regulations of the probability mass function (PMF). This study has focused on 

deriving different mathematical relations of the statistical measures for location, 

scaling, shaping, peakedness etc. Further, we discussed the inter-probability 

distribution properties, generating functions, characteristic functions, etc. 

Sensitivity analysis uses suitable numerical illustrations to understand the model 

behaviour. This study has numerous real-time applications in the context of 

Combinatorics.  

Keywords: Discrete probability distribution, squares within a step formed 

Squares, Pearson’s coefficients, sensitivity analysis.  

 

*Corresponding Author: Surnam Narendra, surnamnarendra@gmail.com 

 

1. Introduction  

This work aims to formulate the probability mass function of the distributions for a 

sequence of overlapping squares within a step-formed court and explicit statistical properties. 

The step-formed squares will be started with one, two, three, and so on …, n numbered 

squares on the baseline. There are two possible formulations that the step-formed courts will 

have, either odd-numbered or even-numbered yards on the baseline. This study deals with the 

initial understanding of the problem as the maximum possible baseline length of a step-

formed square with an odd number. The study has identified the possible sample space and 

favourable sub-spaces by observing the diversified patterns. Probability functions are defined 

with the help of subspace and sample space domains. The notions of probability mass 

function, cumulative distribution function, etc., will be used to understand further detailed 

concepts of the formulated distribution. Model behaviour is studied with Pearson’s 

coefficients and other characteristics such as mean, variance, Skewness, Kurtosis, MGF, 

PGF, characteristics function, etc. using tabular/graphical representations that are formulated 

with randomly generated data through R-studio. 
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1.1.  Squares with Step-Formed Squares 

A Square is a shape with four equal sides. There are several ways of square formats, out of 

which, very few have been considered here for our study. Chess Boards, Stamps, Floor and 

wall tiles, Photo frames, Clocks, etc., are examples of square shapes. Similarly, step-formed 

squares will resemble the conditions of Ladders, Temple Steps, Gopuram, etc. 

 

Figure 1 different forms of step-formed squares 

Step-formed squares look like stairs starting with a single square, then 2, 3, 4, etc. From these 

different unit-length step-formed squares, we aim to determine the patterns of the step formed 

with the maximum possible length. In the preceding section, we discuss how patterns will 

change for the different unit length step formed squares (baseline is odd) with diagrams and 

explanations. 

 

1.2. About the Context  

This section discusses how patterns will change for the different unit length step formed 

squares (baseline odd) with diagrams and explanations. Now let us consider r = other unit 

length step formed squares. By observing Figure 1 of the step forming square, when r=1, the 

number of squares on the baseline is 1, and the maximum possible length is 1. When r =3, the 

Number of squares with 1-unit length = 1+2+3=6, the number of squares with 2-unit length = 

1, number of squares with 3-unit length = 0. Similarly, for higher order, let r=5, i.e. the 

baseline length is five and the maximum possible length is 3. For this pattern, the number of 

squares with 1-unit length = 1+2+3+4+5 = 15, the number of squares with 2-unit length = 

1+2+3 = 6, the number of squares with 3-unit length = 1 and the Number of squares with 4-

units and 5 units length is = 0.  
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Let r =7, i.e. the baseline length is seven, and the maximum possible length is four as the 

number of squares with 1-unit length = 1+2+3+4+5+6+7= 28, number of squares with 2-unit 

length = 1+2+3+4+5= 15, number of squares with 3-unit length = 1+2+3= 6, number of 

squares with 4-unit length = 1 and the number of squares with 5, 6 and 7 –units of length = 0.   

For r=9, i.e. the baseline is nine, and the maximum possible length is 5. Number of squares 

with 1-unit length = 1+2+3+4+5+6+7+8+9= 45, Number of squares with 2-unit length = 

1+2+3+4+5+6+7=28, Number of squares with 3-unit length = 1+2+3+4+5 =15, Number of 

squares with 4-unit length = 1+2+3=6, Number of squares with 5-unit length = 1 and Number 

of squares with 6-, 7-, 8- and 9-units length = 0.  Hence, the baseline will generally be 

extended to (r+1)/2 with the maximum number of possible squares equal to 1. 

 

1.3. Relevant Reported Research Studies 

Klamkin. M.S. (1987), From this book, learned how to implement mathematical modelling in 

real-life applications like traffic flow, electronic networks, medical, sports, and so on [3]. 

A.A. Samarskiiet al. (2001), explained different mathematical models in nature with 

differential equation techniques [6]. F. Blanchet-Sadri et al. (2009), introduced the counting 

of distinct squares in partial words, i.e., in DNA sequence string [2]. Koh Khee Meng et al. 

(2013), From this book, got ideas on developing mathematical modelling in different 

techniques like the addition principle, multiplication principle, bijection principle, etc., in 

combinatorics. And also learned how to apply counting techniques in well-defined shapes 

like squares, triangles, circles, etc., with examples [7]. Elise Lockwood et al. (2015) 

described the problem involving combinations. They have expressed an essential aspect of 

their activity that refers to the combinatorial encoding of outcomes and use this language to 

analyze the work. Bruce E. Sagan (2020) [4], From this book, learned how to make 

combinations and permutations from different cases with different from the methodology 

inclusive and exclusive principle, matrix tree method, exponential functions, and so on [5]. 

Vito Barbarani (2021), This text is about a research paper divided into two parts. In the first 

part, the article looks at a new class of combinatorial objects and examines how they relate to 

the distribution of prime numbers. It also looks at the probability distribution of the n-th 

prime number and provides an estimate of the prime-counting function. The second part of 

the paper looks at generalizing the model to investigate the conditions that enable both the 

Prime Number Theorem and the Riemann Hypothesis. Finally, it discusses a heuristic version 

of the model related to the sequence of primes [1]. 



 
Journal of Statistics, Optimization and Data Science  
Vol. 1 No: 1 (June 2023); pp 50-60 

53 Page 
 

 

 

 

1.4.  Research Gap and Motivation of Study 

After a thorough search of the literature on Combinatorics probability theory, it is observed 

that more work needs to be reported on the formulation of probability distributions and 

modelling of Combinatorics theory with discrete stochastic processes. Most of the time, the 

researchers have attempted to spell out computing different probabilities using the 

Combinatorics theory. Until now, probability theory has been the review stuff using 

combinatorial mathematical modelling, permutations, and counting techniques. However, 

there must be evidence of building probability distribution models using the Combinatorics 

theory, specifically, to the number of squares within step-formed squares. Hence the working 

domain is of a pure virgin. No attempt has been reported on the formulation of combinatorial 

probability distributions for the sequences of odd-numbered baseline step-forming squares. 

These studies are innovative and exciting. All these factors provoked us to make the thought 

processing in this direction. The study has discussed applying Combinatorics techniques to 

explore new probability distributions. Understanding the model behaviour through its 

statistical properties is a comprehensive study. The robustness of the probability distribution 

theory has been carried out with several statistical properties. The appropriate analysis is 

carried out with tabular and graphical representations. 

 

2. Mathematical Model 

2.1. Sample Space and Subspace 

Observing the schematic diagrams, the generalized sample space of different unit-length 

squares from the step-formed square (with baseline odd number) is discussed below with 

mathematical equations and results. 

The number of squares with a 1-unit length is 1 + 2 + 3 + 4 +……. + r = 
𝑟(𝑟+1)

2
 

The number of squares with a 2-unit length is 1 + 2 + 3 + 4 + ……… +(r-2) = 
(𝑟−2)(𝑟−1)

2
 

The number of squares with a 3-unit length is 1 + 2 + 3 + 4 + …………… +(r-4) = 
(𝑟−4)(𝑟−3)

2
 

The number of squares with a 4- unit length is 1 + 2 + 3 + 4 + …………… +(r-6) = 
(𝑟−6)(𝑟−5)

2
 

The number of squares with a 5-unit length is 1 + 2 + 3 + 4 + …………… +(r-8) = 
(𝑟−8)(𝑟−7)

2
 

The number of squares with a 6-unit length is 1 + 2 + 3 + 4 + …………… +(r-8) = 
(𝑟−8)(𝑟−9)

2
 

The number of squares with a 7-unit length is 1+2+3 + 4 + …………… +(r-10) =  
(𝑟−10)(𝑟−9)

2
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The number of squares with k-unit length is 1+2+3+4+………. + (r-2(k-1)) =
(𝑟−2𝑘+2)(𝑟−2𝑘+3)

2
 

The number of squares with  
𝑟+1

2
− 1 length is 6 

The number of squares with 
𝑟+1

2
 length is 1 

The sequence of possible cases is given by  

T = 1 + 6 + 15 + … +  
(𝑟−2𝑘+2)(𝑟−2𝑘+3)

2
 + ……. +  

(𝑟−2)(𝑟−1)

2
 + 

𝑟(𝑟+1)

2
  = ∑

(𝑟−2𝑙+2)(𝑟−2𝑙+3)

2

𝑟+1

2
𝑙=1  

Now, the total possible number of unit lengths is T and is given by T=
3+10𝑟+9𝑟2+2𝑟3

24
 

Favourable Subspace is obtained by observing the patterns from the diagram and possible 

cases the favourable space for different unit length step formed squares N is given by

( 2 2)( 2 3)

2

r l r l
N

   
      

 

2.2. Probability Mass Function  

Let us assume X is a non-negative discrete random number. The probability mass function of 

the discrete combinatorial distribution of step-formed squares with odd baseline numbers. By 

using probability definition PMF is given by 

1

2
2 1 2

2 3
1

12
( ) (4 (4 10) 2 6), 1,2,3,4

3 10 9 2

r

u u u

x

E X x x r r r u
r r r



 



       
  

  

Here x= the number of squares with different unit lengths, and r is the parameter. 

 

Verification of PMF 

From the above probability mass function x and r takes any positive integers so p(x)>0 ∀𝑥 

2 2( 1)/2 ( 1)/2 ( 1)/2

3 2 3 2
1 1 1

12( 2 2)( 2 3) 72 60 12 120 48 48
( ) 1

2 9 10 3 2 9 10 3

r r r

x x x

r x r x r r x rx x
P X x

r r r r r r

  

  

        
   

     
  

 

2.3. Cumulative Distribution Function 

The cumulative distribution function of the given probability mass function is given by 

3 2
1

12( 2 2)( 2 3)
( ) ( )

2 9 10 3

t

x

r x r x
F X P X t

r r r

   
  

  
  

2 2 2 3

3 2

0, 1

4(5 9 3 9 6 4 1
( ) , 1

2 9 10 3 2

1
1,

2

t

t rt r t t rt t r
F X t

r r r

r
t





     

  
  


  
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2.4.  Statistical Characteristics  

The statistical characteristics are follows 

1

2
2 1 2

2 3
1

12
( ) (4 (4 10) 2 6), 1,2,3,4

3 10 9 2

r

u u u

x

E X x x r r r u
r r r



 



       
  

  

μ =
5 + 6𝑟 + 𝑟2

4(1 + 2𝑟)
 

4 3 2

2

4 4 4 5
( ) 3.

80(1 2 )

r r r r
V X

r

   



 

2 3 4 5

3 3

( 110 33 56 14 6

160(1 2 )

r r r r r r

r


     



 

2 3 4 5 6 7 8

4 4

3(385 1832 3024 1960 2378 152 120 104 13

8960(1 2 )

r r r r r r r r

r


       



 

2 2 3 2

1 2 3

20 (22 11 2 )

27( 1 )(5 )(1 )

r r r r

r r r


  


   
 

2 2 3 2

1 2 3

2 5 (22 11 2 )

3 3 ( 1 )(5 )(1 )

r r r r

r r r


  


   
 

2 3 4 5 6

2 2 2 2

77 428 247 504 23 52 13

21(1 ) ( 5 4 )

r r r r r r

r r r


      


   
 

2 3 4 5 6

2 2 2 2

2( 35 1196 901 1008 37 4 )

21(1 ) ( 5 4 )

r r r r r r

r r r


      
 

   
 

( 1)/2

3 2
1

12( 2 2)( 2 3)
( )

2 9 10 3

r
tx

x

x

r x r x
M t e

r r r





   


  
  

( 1)/2

3 2
1

12( 2 2)( 2 3)
( )

2 9 10 3

r
x

x

x

r x r x
P s s

r r r





   


  
  

( 1)/2

3 2
1

12( 2 2)( 2 3)
( )

2 9 10 3

r
itx

x

x

r x r x
t e

r r r






   


  


 

 

3. Numerical Illustration and Graphical Representation 
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3.1. Probability Mass Function 

The behaviour of the probability distribution is analysed through the numerical data 

illustrations as a common point of view. Let us take one numerical example with a finite case. 

Let r = 5, then the total possible chances are 22 by using the formula, and now favourable 

cases for different unit square length follow, and the Maximum possible square is 3-unit 

length. 

T=22 and
(5 2 2)(5 2 3)

2

x x
N

   
  

The probability distribution  

x 1 2 3 

P(X=x) 15/22 6/22 1/22 

3 4 1 1 2 2( ) 1.3636, ( ) 0.3223, 0.2367, 0.3826, 1.6727, 1.2933, 3.6825, 0.6825E X V X               

The probability mass function graph and table with r = 1 to 199 are considered for identifying 

the patterns of the distribution. 

x 1 29 49 69 89 109 129 149 159 179 199 

P(x) 0.02

931 

0.01

972 

0.01

124 

0.00

515 

0.00

141 

0.00

001 

0.00

094 

0.00

423 

0.00

986 

0.01

784 

0.02

812 

When the number of unit-length step-formed squares(X) in the baseline increases, the 

probability value decreases to half of the part. Again, the probability value increases to the 

remaining half part of the lengths. Half of the curve is a positive relationship, and half is a 

negative one. Finally, the probability distribution is shaped like the letter ‘U’ with the highest 

probability at the two extremes and not necessarily symmetrically. 

 

3.2. Cumulative Distribution Function  

Let us assume we have a 5-unit length step-formed square in these results. Here the 

maximum 3-unit length square exists. So, we have a discrete integer probability of 1/22. The 

cumulative probability that 1-unit length step formed squares is 15/22. The cumulative 

probability that 2-unit length steps formed squares is 21/22. Similarly, for 3-unit square 

length is 1. Again, the table and graphical representation are shown when r = 99. 

x 5 9 15 19 25 29 35 39 45 49 

P(X≤x) 0.26

74 

0.48

23 

0.650

50 

0.77

76 

0.86

94 

0.93

17 

0.97

01 

0.99

05 

0.99

85 

0.99

99 

When the number of unit-length step-formed squares(X) values increases, cumulative 

probability also increases positively to the 39-unit length. Then the incremental value is fixed 

at one and constant till 49. 
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Figure 2 probability distribution 

3.3. Statistical Characteristics Table  

X 1 29 49 69 89 109 129 149 159 179 199 

μ 
 

1 3.07

6923   

5.569

620   

8.067

227 

10.56

6038 

13.06

5327 

15.56

4854 

18.06

4516 

20.56

4263 

23.06

4067 

25.56

3910 

σ2 
 

0 3.85

562   

15.29

0723   

34.22

7413   

60.66

4507   

94.60

1763 

136.0

39099 

184.9

76483 

241.4

13895 

305.3

51327 

376.7

88773 

μ3 0     6.75

594    

51.92

090   

173.0

2274   

407.5

6193   

793.0

3857 

1366.

95268 

2166.

80428 

3230.

09337 

4594.

31996 

6296.

98403 

μ4 
 

0 4.29

84 

56.21

70 

263.5

080 

799.1

929 

1901.

5815 

3874.

2733 

7086.

1579 

11971

.4151 

19029

.5147 

28825

.2168 

𝛽1 4.1

666 

0.79

632 

0.754

0505 

0.746

5934 

0.744

0176 

0.742

8326 

0.742

1911 

0.741

8051 

0.741

5550 

0.741

3837         

0.741

263 

𝛾1 2.0

412 

0.89

236 

0.868

3608 

0.864

0563 

0.862

5645 

0.861

8774 

0.861

5051 

0.861

2811 

0.861

1359 

0.861

0364         

0.860

93 

𝛽2 5.1

666 

3.11

606 

3.099

005 

3.096

705 

3.096

005 

3.095

707 

3.095

554 

3.095

464 

3.095

408 

3.095

371 

3.095

344 

𝛾2 2.1

666 

0.11

606 

0.099

00502 

0.096

70494 

0.096

00536 

0.095

70702 

0.095

55352 

0.095

46448 

0.095

40835 

0.095

37073 

0.095

34431 

 

3.4.Statistical Characteristics Graphs 

 

Figure 3First four Raw moments of the distribution 

By observing the above four raw moments, firstly, we have a mean plot when the number 

of different unit length step formed squares(X) values increases, the mean value also 

increases ideally, so there is a perfect positive relationship between X values and mean. 

Finally, it looks like an ideal positive increment line. Similarly, the second raw moment is 

slightly constant and again increasing positively. Third and fourth-order raw moments 

look like ‘J’ shaped curves.  
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Figure 4First four central moments of the distribution 

All the central moments start from zero. When the number of different unit-length step-

formed squares increases, the variance curve also increases positively. Finally, it looks 

like the letter “J” shaped curve and exponential positive. Similarly,μ3  and  μ4 also. 

 

Figure 5coefficient  of Skewness 

When the number of different unit length step formed squares increases, then β1value 

starts at 4.1667. Downwards to approximately 0.796321 at x=29, then is approximately 

constant from 69 onwards till 100, indicating positive skewness, i.e., 

mean>median>mode. when x values increase then β1value decreases. Similarly, When 

the number of different unit length step formed squares increases, then γ1 value starts at 

2.04124 and then downwards to approximately 0.86836 at x=29. It is approximately 

constant till 100, so the right tail is more, and it indicates positive Skewness, i.e., 

mean>median>mode. When x values increase, then γ1 value decreases. 

 

Figure 6 coefficient of Kurtosis 

When the number of different unit length step formed squares increases, then the β2value 

starts at 5.6667, then downwards to approximately 3.116061 at x=29, then from x=49 
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onwards constant till 100. when X values increase then β2 value decreases. Similarly, the 

number of different unit length step formed squares increases then γ2 the value starts at 

2.16667 and then downwards to approximately 0.1160611 at x=29, then from x=69 on 

wards constant till 100, and it indicates positive Kurtosis. 

 

Figure 7Moment generating function with different values of t 

Observing the MGF plot with different t values, moment values also increase when the r-

value increases. 

 

Figure 8Probability generating function with different values of S 

By observing the PGF plot with different S values when the r-value increases probability 

value decreases. 

 

4. Results and Conclusion  

This paper finds the combinatorial probability distribution of a sequence of overlapping 

squares within a step-formed square. It is observed that if the baseline unit length is an odd-

numbered square, then the maximum possible unit length square is
( 1)

2

number 
, and for 

finding different unit length squares is
( 2 2)( 2 3)

2

r x r x   
. Where r = different unit 

length, say 1,3, 5, , ,. and the sample is 
2 33 10 9 2

24

r r r
T

  
  and favorable space is
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( 2 2)( 2 3)

2

r x r x
N

   
 . By using the definition of probability, probability mass function 

is   
2 3

12( 2 2)( 2 3)
( ) , 1,2,3,4,5,...,. 0

3 10 9 2

r x r x
P X x x r

r r r

   
   

  
 

The randomly generated data from the R-studio discussed the statistical properties.  The 

probability mass function is a ‘U’ shaped curve, and the probability maximum attains at two 

points and is not necessarily symmetric. The Cumulative distribution function slightly 

increases still 40-unit square length, then stationary till 50. The mean value is growing 

positively, and the variance is a ‘J’ shaped curve, concluding that the variance is greater than 

the mean. Similarly, both μ3 and μ4  are positive and ‘J’ shaped curves. Skewness is positive, 

and Kurtosis is leptokurtic. From the MGF with different t values, when the r-value increases, 

then moment values also increase. From the PGF with different S values, when the r-value 

increases probability value decreases. 
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